

REDUCE AND RECAPTURE CO₂: Sustainable Approach for Macro- and Nano- Scale Carbon in Building Materials

Dr. Hicham Ghossein, Ph.D.
Dr. Anna Douglas, Ph.D.
ARPA-E Workshop
March 25, 2021

THE COMPOSITE MARKET IS ON THE RISE

* According to AVK Composites Market Report 2018 and Freedonia group study 2019

Energy intensive process

70 % Yield production

Trims generated waste

THE DARK SIDE OF CARBON FIBER & COMPOSITE PRODUCTION

Fibers that end in landfill each year are worth \$1 Billion

WASTE REDUCTION: REPURPOSING OF WASTE INTO NONWOVEN

Defect free wet laid nonwoven preforms made with long chopped fiber "1 inch / 25.4 mm"

- PATENT PENDING PROCESS
- INTERCEPT FIBERS FROM LANDFILL
- CREATE NONWOVEN FABRICS

- HIGH SPEED & LOW-COST PRODUCTION
- ENERGY CONSERVATIVE
- ENVIRONMENTALLY FRIENDLY

- TURNKEY PREFORMS
- \$15 BILLION IN ADDED VALUE PRODUCTS
- POTENTIAL FUNCTIONALITY

FURTHER REDUCTION IN CARBON FOOTPRINT

Nonwoven bamboo mats with 2% binder

20% reinforcement with equal quantity of CF and bamboo

40% in weight bamboo with PP wet laid mat: a) before and b) after compression molding

- The Wet-laid technology is adopted from the paper making industry
- The usage of natural fiber and mixed reinforcement provides added benefits
- Additional CO2 reduction can be achieved with usage of bio resins for Matrix and carbon negative nano material

CIRCULAR ECONOMY: NOT ENOUGH

Key Challenges:

- -cost of conversion versus perceived economic value of product
- -products are used in emissions-generating applications

CO2-SOLID CARBON STORAGE: BUILDING THE BUILDING BLOCKS

CARBON NANOTUBES

- -proven market demand
- -high value
- -our ability to make them at low cost

CARBON NANOTUBES

MWCNT: multi-walled CNT -\$100+/kg

SWCNT: single-walled CNT

-\$2,000/kg low purity

-\$50,000/kg high purity

Carbon Nanotubes are non-naturally earth occurring supermaterials with extraordinary physical properties.

<u>Mechanical</u>

200X tensile strength of steel at 1/3 weight

Thermal

7.5X higher than Cu, on par with diamond

Electrical

approaching Cu at 5E6 S/cm

Carbon nanotubes have been 2 years away from revolutionizing the world... for 20 years now.

CURRENT CNT BOTTLENECK: MANUFACTURING COST

Scalability barriers

Energy-intensive

Limits applications

NOVEL ELECTROCHEMICAL MANUFACTURING

- CO₂ captured/converted from air as chemical feedstock
- Open system facilitates scaling
- Harnesses the precision of electrochemistry

Unparalleled Energy Efficiency

TUNABLE MWCNT PROPERTIES

 $Li_2CO_3 \rightarrow Li_2O + O_2 + C$ $Li_2O + CO_2 \rightarrow Li_2CO_3$

NET: $CO_2 \rightarrow C + O_2$

Tunable MWCNT properties based on process parameters extra knob of control with electrochemistry!

Electrode architecture to produce high quality CNTs IP protected

5 nm

5 nm

CO₂-DERIVED CNTS IN BUILDLINGS

SKYNANO + ENDEAVOR: CO₂-NEGATIVE COMPOSITE

50% LDPE 50% SkyNano MWCNTs

Carbon Footprint Calculation:

LDPE: +1.54 kg_{CO2}/kg_{LDPE}**

MWCNTs: -3.66 kg_{CO2}/kg_{MWCNT}

at 50/50 wt%, total composite stores over 100% of it's weight in CO₂

ongoing aggressive goals to be *more* CO₂ negative include:

- -biobased polymers
- -more CO2-negative thermoplastics

**source: EPA Plastics report, 2015